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A promising, fundamentally new approach to the 
prevention and treatment of atherosclerosis is based upon 
inhibition of acyl-CoAcholesterol acyltransferase (ACAT), 
the enzyme that catalyzes intracellular esterification of 
cholesterol. This strategy may permit suppresion of 
three distinct, ACAT-dependent steps in the pathology 
of atherosclerosis: absorption of dietary cholesterol in the 
gut, hepatic synthesis of lipoproteins, and deposition of 
oily cholesteryl esters within the developing arterial 
le~ions. l -~ In 1993, we reported the isolation, planar 
structures, and initial biological evaluation of the py- 
ripyropenes A-D (1-4), potent ACAT inhibitors isolated 
from Aspergillus fumigatus FO-1289.4 These novel, 
polyoxygenated mixed polyketide-terpenoid (meroter- 
penoid) metabolites contain a fused pyridyl a-pyrone 
moiety and eight contiguous stereo center^;^ subsequently, 
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Pyripyropenes 
A (1) R , = R S = R ~ = A C  
B (2) R2 = R3 = AC, R j  = COEt 
C (3) R1 = R3 AC, R2 COEt 
D (4) R1 I R2 = AC, R3 = COEt 

we determined the relative and absolute stereochemis- 
tries of 1 as well, employing NOE-difference and Mosher 
ester NMR studies in conjunction with X-ray crystal- 
lography.6 The pyripyropenes not only rank as the most 
effective naturally occurring ACAT inhibitors in vitro, 
with IC50 values of 58,117,53, and 268 nM, re~pectively,~ 
but also display oral bioavailability in hamsters." Herein, 
we describe the first total synthesis of the most active 
member of this family, (+)-pyripyropene A (11, via a 
flexible, concise and highly efficient route.8 

From the retrosynthetic perspective (Scheme 11, we 
envisioned construction of advanced ketone 6 via acyla- 
tion of the known hydroxy a-pyrone g9 with acid chloride 
8 in the presence of an acid catalyst; isomerization to the 
C-acyl pyrone 6 and ring closure would then deliver 6 
with the requisite anti geometry at  the BC ring fusion. 
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(+)-1212 (85%). a-Monomethylation of the B-ring ketone 
began with the enol silyl ether derivative (KDA, MesSiCl); 
generation of the reactive benzyltrimethylammonium 
enolate via the Kuwajima protocol [benzyltrimethylam- 
monium fluoride (BTAF), MeI, 4 A molecular sieves, 
THF1l3 and treatment with methyl iodide then afforded 
the requisite ketone 1312 in 66% yield as a 5:l mixture 
of a and /? dia~tere0mers.l~ Sulfonylation with triflic 
anhydride in the presence of 2,6-di-tert-butyl-4-meth- 
ylpyridine (CHzCl2, reflux)15 gave enol triflate (+)-14,12 
which in turn underwent palladium-catalyzed carbony- 
lation [CO atmosphere, Pd(OAc)z, PPh3, EtsN, MeOH, 
DMFI as described by Stille16 to produce methyl ester (+I- 
1512 (72% yield, two steps). Installation of the C(7) 
/?-hydroxyl group first entailed SeOz oxygenation (diox- 
ane, reflux)17 and oxidation of the resultant C(7) a-alcohol 
to enone (+)-1612 (PCC, Celite, PhH, 3 A molecular sieves; 
66% yield). Stereoselective Luche reductionl8 then pro- 
vided (+)-1712 quantitatively. Hydrogenolysis of the 
benzyl ethers, cleavage of the methyl ester,lg and per- 
acetylation (ACZO, D W ,  pyridine) led to carboxylic acid 
(+)-1812 (96% yield, three steps). The latter was con- 
verted to acid chloride 8 [NaH (1.05 equiv), PhH, rt; 
(COC1)z (14 equiv); loo%]. 

The crucial sequence joining hydroxy pyrone 9 with AB 
subunit 8 proceeded readily in trifluoroacetic acid (80 "C, 
4 h); 0-acylation followed by in situ 1,3-acyl migration 
and 1,4-cyclization formed the pentacyclic ketone (+)W 
in 47% yield for the three steps. An analogous transfor- 
mation involving achiral coupling partners was described 
previously by Douglas and Money;20 the requisite anti 
BC ring junction in 5 derived from conjugate addition 
and enolate protonation trans to the C(12) angular 
methyl group. Stereoselective reduction of 5 (NaBH4, 
CeC13, MeOH) then furnished synthetic (+I-pyripyropene 
A (1) (96%) as colorless needles (mp 152-153 "C). The 
synthetic material was identical in all respects with a 
sample of the natural product (400-MHz lH and 100-MHz 
13C NMR, IR, HRMS, optical rotation, melting point and 
mixed melting point, and TLC in four solvent systems). 

The first total synthesis of (+I-pyripyropene A (1) has 
thus been achieved via a convergent and efficient strategy 
(16 steps, 9.3% overall yield). Importantly, the successful 
approach is designed to provide flexibility in construction 
of congeners B-D (2-4) as well as a range of potentially 
bioactive analogs. 
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The sesquiterpene subunit 8 was anticipated to derive 
from alcohol (-1-10 (Scheme 21, an intermediate in our 
paspaline total synthesis,loa readily available from (+I- 
Wieland-Miescher ketone in three steps.lob 

Toward this end, stereoselective reduction of (-1-10 
with tetramethylammonium triacetoxyborohydridell 
(Scheme 2) furnished trans diol (-)-1112 (95% yield, >95% 
de), which upon dibenzylation and deketalization gave 
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