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Total Synthesis of (+)-Pyripyropene A.
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A promising, fundamentally new approach to the
prevention and treatment of atherosclerosis is based upon
inhibition of acyl-CoA:cholesterol acyltransferase (ACAT),
the enzyme that catalyzes intracellular esterification of
cholesterol. This strategy may permit suppresion of
three distinct, ACAT-dependent steps in the pathology
of atherosclerosis: absorption of dietary cholesterol in the
gut, hepatic synthesis of lipoproteins, and deposition of
oily cholesteryl esters within the developing arterial
lesions.!™® In 1993, we reported the isolation, planar
structures, and initial biological evaluation of the py-
ripyropenes A—D (1—-4), potent ACAT inhibitors isolated
from Aspergillus fumigatus FO-1289.* These novel,
polyoxygenated mixed polyketide—terpenoid (meroter-
penoid) metabolites contain a fused pyridyl a-pyrone
moiety and eight contiguous stereocenters;’ subsequently,
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Pyripyropenes
A (1) Ry=Ry=Ry=Ac
B (2) R,=Rj3=Ac, Ry=COEt
C (3) Ry=Rz=Ac, R,mCOE!
D (4) R,=R;=Ac, Ry=COEt

we determined the relative and absolute stereochemis-
tries of 1 as well, employing NOE-difference and Mosher
ester NMR studies in conjunction with X-ray crystal-
lography.® The pyripyropenes not only rank as the most
effective naturally occurring ACAT inhibitors in vitro,
with ICs, values of 58, 117, 53, and 268 nM, respectively,’
but also display oral bioavailability in hamsters.* Herein,
we describe the first total synthesis of the most active
member of this family, (+)-pyripyropene A (1), via a
flexible, concise and highly efficient route.?

From the retrosynthetic perspective (Scheme 1), we
envisioned construction of advanced ketone 5 via acyla-
tion of the known hydroxy a-pyrone 9° with acid chloride
8 in the presence of an acid catalyst; isomerization to the
C-acyl pyrone 6 and ring closure would then deliver 5
with the requisite anti geometry at the BC ring fusion.

Scheme 1
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The sesquiterpene subunit 8 was anticipated to derive
from alcohol (—)-10 (Scheme 2), an intermediate in our
paspaline total synthesis,!% readily available from (+)-
Wieland—Miescher ketone in three steps.l®

Toward this end, stereoselective reduction of (—)-10
with tetramethylammonium triacetoxyborohydride!!
(Scheme 2) furnished trans diol (—)-11'2 (95% yield, >95%
de), which upon dibenzylation and deketalization gave
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(+)-121%2(85%). a-Monomethylation of the B-ring ketone
began with the enol silyl ether derivative (KDA, Me;SiCl);
generation of the reactive benzyltrimethylammonium
enolate via the Kuwajima protocol [benzyltrimethylam-
monium fluoride (BTAF), Mel, 4 A molecular sieves,
THF]'? and treatment with methyl iodide then afforded
the requisite ketone 18'2 in 66% yield as a 5:1 mixture
of a and B diastereomers.'* Sulfonylation with triflic
anhydride in the presence of 2,6-di-fert-butyl-4-meth-
ylpyridine (CHyCl,, reflux)!® gave enol triflate (4)-14,2
which in turn underwent palladium-catalyzed carbony-
lation [CO atmosphere, Pd(OAc);, PPh;, Et;:N, MeOH,
DMF1] as described by Stille!® to produce methyl ester (+)-
1512 (72% yield, two steps). Installation of the C(7)
B-hydroxyl group first entailed SeO, oxygenation (diox-
ane, reflux)!” and oxidation of the resultant C(7) a-alcohol
to enone (+)-1612 (PCC, Celite, PhH, 3 A molecular sieves;
66% yield). Stereoselective Luche reduction!® then pro-
vided (+)-17'2 quantitatively. Hydrogenolysis of the
benzyl ethers, cleavage of the methyl ester,'® and per-
acetylation (Ac;O, DMAP, pyridine) led to carboxylic acid
(+)-18!2 (96% yield, three steps). The latter was con-
verted to acid chloride 8 [NaH (1.05 equiv), PhH, rt;
(COCl); (14 equiv); 100%].

The crucial sequence joining hydroxy pyrone 9 with AB
subunit 8 proceeded readily in trifluoroacetic acid (80 °C,
4 h); O-acylation followed by in situ 1,3-acyl migration
and 1,4-cyclization formed the pentacyclic ketone (+)-5'2
in 47% yield for the three steps. An analogous transfor-
mation involving achiral coupling partners was described
previously by Douglas and Money;?° the requisite anti
BC ring junction in § derived from conjugate addition
and enoclate protonation trans to the C(12) angular
methyl group. Stereoselective reduction of § (NaBH,,
CeCl;, MeOH) then furnished synthetic (+)-pyripyropene
A (1) (96%) as colorless needles (mp 152—153 °C). The
synthetic material was identical in all respects with a
sample of the natural product (400-MHz 'H and 100-MHz
13C NMR, IR, HRMS, optical rotation, melting point and
mixed melting point, and TLC in four solvent systems).

The first total synthesis of (+)-pyripyropene A (1) has
thus been achieved via a convergent and efficient strategy
(16 steps, 9.3% overall yield). Importantly, the successful
approach is designed to provide flexibility in construction
of congeners B—D (2—4) as well as a range of potentially
bioactive analogs.
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